Associative long-term depression in the hippocampus is dependent on postsynaptic N-type Ca2+ channels.
نویسندگان
چکیده
Long-term depression (LTD) is a form of synaptic plasticity that can be induced either by low-frequency stimulation of presynaptic fibers or in an associative manner by asynchronous pairing of presynaptic and postsynaptic activity. We investigated the induction mechanisms of associative LTD in CA1 pyramidal neurons of the hippocampus using whole-cell patch-clamp recordings and Ca(2+) imaging in acute brain slices. Asynchronous pairing of postsynaptic action potentials with EPSPs evoked with a delay of 20 msec induced a robust, long-lasting depression of the EPSP amplitude to 43%. Unlike LTD induced by low-frequency stimulation, associative LTD was resistant to the application of d-AP-5, indicating that it is independent of NMDA receptors. In contrast, associative LTD was inhibited by (S)-alpha-methyl-4-carboxyphenyl-glycine, indicating the involvement of metabotropic glutamate receptors. Furthermore, associative LTD is dependent on the activation of voltage-gated Ca(2+) channels by postsynaptic action potentials. Both nifedipine, an L-type Ca(2+) channel antagonist, and omega-conotoxin GVIA, a selective N-type channel blocker, abolished the induction of associative LTD. 8-hydroxy-2-dipropylaminotetralin (OH-DPAT), a 5-HT(1A) receptor agonist, inhibited postsynaptic Ca(2+) influx through N-type Ca(2+) channels, without affecting presynaptic transmitter release. OH-DPAT also inhibited the induction of associative LTD, suggesting that the involvement of N-type channels makes synaptic plasticity accessible to modulation by neurotransmitters. Thus, the modulation of N-type Ca(2+) channels provides a gain control for synaptic depression in hippocampal pyramidal neurons.
منابع مشابه
Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro.
Associative long-term depression (LTD) was induced in hippocampal slice cultures with repeated low-frequency (0.3 Hz) stimulation of the Schaffer collateral pathway, only when such stimuli were preceded by intracellular injection of brief depolarizing current pulses in the postsynaptic CA1 pyramidal cell. The decrease in excitatory postsynaptic potential amplitude lasted > 30 min, could be reve...
متن کاملCa2+ Signaling Requirements for Long-Term Depression in the Hippocampus
It has been hypothesized that the direction of synaptic weight change elicited by synaptic activity depends on the magnitude of the activity-dependent rise in intracellular Ca2+ concentration. Several aspects of this hypothesis were examined at the Schaffer collateral CA1 synapse, where both long-term depression (LTD) and long-term potentiation (LTP) can be elicited and are Ca2+ dependent. Brie...
متن کاملInduction of LTD in the dentate gyrus in vitro is NMDA receptor independent, but dependent on Ca2+ influx via low-voltage-activated Ca2+ channels and release of Ca2+ from intracellular stores.
The mechanisms of the induction of long-term depression (LTD) of field excitatory postsynaptic potentials (EPSPs) and whole cell patch-clamped excitatory postsynaptic currents (EPSCs) were studied in the dentate gyrus of the rat hippocampus. LTD of field EPSPs measuring 40% of control at 30 min poststimulation was induced by low-frequency stimulation consisting of 900 pulses at 1 Hz. LTD of EPS...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملMechanisms underlying the rules for associative plasticity at adult human neocortical synapses.
The neocortex in our brain stores long-term memories by changing the strength of connections between neurons. To date, the rules and mechanisms that govern activity-induced synaptic changes at human cortical synapses are poorly understood and have not been studied directly at a cellular level. Here, we made whole-cell recordings of human pyramidal neurons in slices of brain tissue resected duri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 22 شماره
صفحات -
تاریخ انتشار 2000